High order numerical integrators for single integrand Stratonovich SDEs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postprocessed Integrators for the High Order Integration of Ergodic SDEs

The concept of effective order is a popular methodology in the deterministic literature for the construction of efficient and accurate integrators for differential equations over long times. The idea is to enhance the accuracy of a numerical method by using an appropriate change of variables called the processor. We show that this technique can be extended to the stochastic context for the cons...

متن کامل

Jovian Problem: Performance of Some High-Order Numerical Integrators

N-body simulations of the Sun, the planets, and small celestial bodies are frequently used to model the evolution of the Solar System. Large numbers of numerical integrators for performing such simulations have been developed and used; see, for example, [1,2]. The primary objective of this paper is to analyse and compare the efficiency and the error growth for different numerical integrators. T...

متن کامل

Parallel High-Order Integrators

In this work we discuss a class of defect correction methods which is easily adapted to create parallel time integrators for multi-core architectures and is ideally suited for developing methods which can be order adaptive in time. The method is based on Integral Deferred Correction (IDC), which was itself motivated by Spectral Deferred Correction by Dutt, Greengard and Rokhlin (BIT-2000). The ...

متن کامل

University of Cambridge Numerical Analysis Reports High Order Numerical Integrators for Diierential Equations Using Composition and Processing of Low Order Methods High Order Numerical Integrators for Diierential Equations Using Composition and Processing of Low Order Methods

In this paper we show how to build high order integrators for solving ordinary diierential equations by composition of low order methods and using the processing technique. From a basic p-th order method, p , one can obtain high order integrators in the processed form n = P K P ?1 (n > p) being both the processor P and the kernel K compositions of the basic method. The number of conditions for ...

متن کامل

Pathwise Accuracy and Ergodicity of Metropolized Integrators for SDEs

Metropolized integrators for ergodic stochastic differential equations (SDEs) are proposed that (1) are ergodic with respect to the (known) equilibrium distribution of the SDEs and (2) approximate pathwise the solutions of the SDEs on finitetime intervals. Both these properties are demonstrated in the paper, and precise strong error estimates are obtained. It is also shown that the Metropolized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2020

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2020.08.002